
“main”
2003/12/14
page 33

i

i

i

i

i

i

i

i

33

TRANSPARENT DATA RELOCATION IN HIGHLY
AVAILABLE DISTRIBUTED SYSTEMS

SPYROS VOULGARIS, MAARTEN VAN STEEN, ALINE BAGGIO, AND GERCO
BALLINTIJN

Abstract. In a distributed system, long-running distributed services are often confronted with
changes to the configuration of the underlying hardware. If the service is required to be highly
available, the service needs to deal with the problem of adapting to these changes while still pro-
viding its service. This problem is increased further if multiple changes can occur concurrently. In
this paper, we describe a method that solves this problem by carefully shipping data and forward-
ing requests to appropriate hosts. Our method specifically enables the distributed service to deal
with concurrent changes in a concurrent fashion, thereby promoting the efficiency of the service.

1. Introduction

A service in a distributed system is often implemented as a set of cooperating
server processes distributed among multiple machines. These server processes
handle requests from client processes and jointly manage the data and compu-
tations that comprise the (distributed) service. Managing such a set of servers
has many facets. In this paper we focus on one facet namely the problem of
redistributing data between the server processes. This problem is usually con-
sidered part of configuration management [1].

In a distributed system, server processes are frequently added, moved, or
removed, for instance, to adapt the system to changes in its usage. As a result
of these configuration changes, the data stored at the servers needs to be redis-
tributed to reflect the updated set of servers. Changes to the configuration of
the system are not the only reason for data redistribution among servers. For
instance, a change in the load distribution policy used by the service (e.g., the
introduction of a new load balancing scheme), would also result in the redistri-
bution of data.

Ideally, data redistribution should be done in a way that is transparent to
client processes. To accomplish this transparency, we need to solve two prob-
lems: (1) how to locate data, and (2) how to move data while allowing op-
erations on that data to be processed. Much work has been done on locating

Studia Informatica Universalis



“main”
2003/12/14
page 34

i

i

i

i

i

i

i

i

34 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

mobile data, or more generally, objects [2]. However, mechanisms for handling
mobility only partly solve our problem as we also need to guarantee continuous
access to the data that is being moved.

In this paper we describe a solution for achieving such transparency for dis-
tributed services. The main contribution of this paper is that we show how data
redistribution can take place in a distributed system in a way that is transparent
to clients. Our solution specifically enables the service to continue to operate,
and thus does not compromise its availability.

The remainder of this paper is organized as follows. We continue in Sec-
tion 2 with a description of the model of the distributed system we want to
support. In Section 3, we describe the basic structure of our solution when
applied to a single configuration change. Afterward, in Section 4, we explain
some of the design alternatives we have considered. In Section 5, we extend
our solution and examine several ways in which it can deal with concurrent
configuration changes. We describe some related work in Section 6 and con-
clude with Section 7.

2. The System Model

In our system model, the data that is managed by a distributed service consists
of a (potentially large) set of self-containeddata records, or simply records.
Every record in the service has its ownidentifierandvalue, which can be read
or written. Over the course of time, new records will be added to the service
and existing ones will be removed. The service is implemented by a set of
server processes, with each server located on a different machine and managing
(or hosting) a disjoint subset of the records. Every record is always hosted by
a single server, which we call the record’shosting server. In other words, we
assume that data records are not replicated. Records are assigned to servers
based on a deterministic load distribution policy that can change over time.

The distributed service provides its services to externalclient processes. A
client submits a request to perform an operation on a record by providing the
type of operation, the identifier of the record, and the set of parameters for the
operation. We distinguish two kinds of operations:lookupandupdateopera-
tions. A lookup operation is read-only; it returns the value of a record without
modifying its content. In contrast, update operations include all operations that
either change the value of a record, or that add or remove a record from the
current set of records.

The load distribution policy is captured by a data structure which we call
themapping. This data structure defines for each record its hosting server. For

SIU 2002



“main”
2003/12/14
page 35

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 35

easy access, each server keeps a local copy of the mapping. To invoke an opera-
tion, a client arbitrarily picks a server and submits its request to it. The selected
server then looks in its copy of the mapping to determine the record’s hosting
server and forwards the request accordingly. We assume reliable communica-
tion for both client-server and server-server request passing. As we shall see
later, a server may keep copies of more than one mapping when configura-
tion changes are in progress. In such a case, the oldest mapping is called the
authoritative mappingand is used to forward requests.

Whenever a server is added or removed from the distributed service or when
its load distribution policy is changed, the placement of the records at the
servers may no longer adhere to the load distribution policy. If that is the
case, the service needs to redistribute its records over its servers. We refer to
this process asrecord relocation, or simply relocation. As a result of this relo-
cation, the mapping needs to be updated to reflect the new distribution of the
records over the servers.

Mappings are managed by a separate service, called theconfiguration ser-
vice. Whenever the configuration service is informed about a configuration
change, it is responsible for building an updated mapping that includes the con-
figuration change and for providing the new mapping to all the servers. When
a server receives the new mapping, it starts relocating records. Transferring of
mappings between a server and the configuration service, as well as relocation
of records between servers are carried out by means of reliable communica-
tion. The internal design of the configuration service is out of the scope of this
paper.

It is important that the update of the mapping and the subsequent relocation
of records are transparent to client processes. The problem we are thus faced
with ishowto relocate records in the distributed service while still guaranteeing
continuous availability of the records to the clients. Clients should be able to
simply submit a request for any record at any times, that is, before, during
and after the relocation of the record. Note that we also like the solution to
complete the configuration change in a timely manner. We do not consider
security issues in this paper and assume that servers and communication can
be trusted.

3. The Solution for a Single Redistribution

Our solution for the transparent redistribution of records consists of the follow-
ing three steps:

Initialization: Initially, all the servers have a local copy of the authoritative
mappingM , which is used for forwarding requests to the proper hosting

SIU 2002



“main”
2003/12/14
page 36

i

i

i

i

i

i

i

i

36 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

servers of the records involved. When the configuration service receives
the notification for a configuration change, it computes a new mapping
M ′ that reflects the change, and distributesM ′ to all the servers of the
distributed service.

Record relocation:When a server receives a new mappingM ′, it checks
if some of its own records have to be relocated, and ships (relocates) the
records remapped byM ′ to their respective new hosting servers.

During the record relocation step, servers continue to forward client
requests using the authoritative mappingM . A server can, therefore, be
handed a request for a record that it should host underM , but that is
remapped byM ′. Requests involving such analready-shippedrecord
areforwardedto the record’snewhosting server as dictated byM ′. In
this way, the authoritative hosting server acts as a proxy for the already-
shipped records. A request involving anot-yet-shippedrecord is simply
serviced locally by theauthoritativehosting server, that is, the server as
dictated by the authoritative mappingM .

Termination: As soon as a server completes its record relocation step, it
notifies the configuration service. When the configuration service re-
ceives completion notifications fromall servers, it, in turn, notifies all
the servers that the termination step can start. During the termination
step, each server simply discards mappingM and replaces it byM ′,
which then becomes the new authoritative mapping.

Once the termination step is over, servers that are destined to be removed
are free to shutdown, and newly added ones can expect to be handed requests
directly for records they host. Variations in the delivery time of messages from
the configuration service to different servers may cause a temporary inconsis-
tency between some servers where some may still regardM as authoritative
while others are already usingM ′. As a consequence, if a terminating server
learns about the completion of the configuration change and shuts down before
some other server has been notified, the latter may still attempt to forward a re-
quest to the then terminated server. Should such a situation occur, the forward-
ing server contacts the configuration service to be updated on the authoritative
mapping and forward the request to the new authoritative hosting server.

To make the record relocation step more efficient, a server does not discard
a record after it has been shipped to its new host. Instead, the server keeps
handlinglookuprequests for such a record, but only for as long as that record
remains consistent with the copy at its new hosting server. An already-shipped
record is considered consistent with its copy at the new hosting server until the
first updaterequest for that record is made. After the first update request is

SIU 2002



“main”
2003/12/14
page 37

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 37

Figure 3.1: State diagram for relocating records

received for an already-shipped record, the server forwards this andall subse-
quent requests (including lookups) for this record to the record’s new hosting
server.

A request for a record that can be handled at its current hosting server, even
if it has already been shipped, is referred to as alocally serviceable request.
Note that until the relocation step is over, servers forward client requests using
the current authoritative mapping. Hence, all requests for a record will be
forwarded to its current hosting server, even when the record has been shipped
to its new hosting server.

To ensure consistency, a server associates astateflag with each of its records.
Figure 3.1 shows the state diagram that controls the behavior of a server with
respect to a record. All records are initially assigned theLOCAL state and
requests for them are handled locally. When a record is shipped to its new
hosting server, its state changes fromLOCAL to SHIPPED IN-SYNC. Lookup
requests for that record will continue to be handled locally until the first up-
date request arrives. When the authoritative hosting server receives the first
update request for that record, its state changes fromSHIPPED IN-SYNCto
SHIPPED NOT-IN-SYNC. From that point on, the authoritative hosting server
delegates responsibility for that record to the new hosting server by forwarding
it all requests for that record. The authoritative hosting server is now free to
remove the record from its local storage.

SIU 2002



“main”
2003/12/14
page 38

i

i

i

i

i

i

i

i

38 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

4. Alternative Design Considerations

A number of design decisions were taken in our solution on how to carry out
the tasks associated with the redistribution of data. For some of these tasks,
alternative strategies could have been employed. For instance, the relocation
of a record to its new hosting server and the handling of client requests during a
redistribution could be done differently. In this section, we present alternative
approaches to these tasks and motivate our choices.

First consider the relocation of records. In our solution, a record that needs
to be relocated ispushedby its authoritative hosting server to its new hosting
server. An alternative is to let records bepulled on-demandby their respective
new hosting servers. In this alternative, the new mappingM ′ is distributed to
all the servers, but no record shipping starts. Instead, when a server receives
a request for a record itshould— but does not yet — have, it fetches the
record from its authoritative hosting server and handles the request. The main
disadvantage of this approach is that data redistribution does not complete until
each of the remapped records receives at least one request. The time it takes
to complete a redistribution is therefore unbounded, which is a problem for
servers that need to shut down quickly. For this reason, we did not consider
this solution any further.

Another task where alternative strategies could have been chosen is the way
to deal with requests while redistribution is in progress. In particular, if a host-
ing server receives a request for a record that is not yet shipped, the server sim-
ply handles the request locally since no other copy of the record exists. How-
ever, if the record has already been shipped, different options exist. One option
is to reject the request and let the client keep trying until the redistribution is
completed. However, this option does not conform with our transparency goal.

Another option is to always handle the request locally independent of whether
it is a lookup or an update request. In the case of an update request for a
record that is already relocated, the authoritative hosting server propagates the
record’s modified value to its new hosting server in order to keep the two copies
of the record consistent. In this approach, a server can report completion of a
redistribution to the configuration service only after it has finished shipping its
recordsand made sure that the values of all modified records have been ac-
cepted by the new hosting servers. This solution has the advantage that update
requests are processed slightly faster, but introduces additional complexity for
keeping the records consistent.

A different approach can also be considered for the initial forwarding of
requests. The initial server that is arbitrarily selected by a client to handle a re-
quest may forward the request directly to the new hosting server of the record

SIU 2002



“main”
2003/12/14
page 39

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 39

involved instead of the currently authoritative one. If the record has already
been shipped to its new hosting server, the request is handled immediately.
If not, the new hosting server may either stall the request until the record is
shipped to it, or it can fetch the record from its authoritative hosting server on
demand. The former case does not satisfy the requirement of continuous avail-
ability. The latter case is a solution that we did consider, but whose advantages
hardly outweigh the complexity it introduces.

There is a tradeoff between, on the one hand, forwarding a request to the
record’s authoritative hosting server and having it forwarded further if the
record is already shipped, and on the other hand forwarding the request to
the record’s new hosting server and having the record fetched on demand if it
has not been shipped yet. This tradeoff depends on the frequency and the types
of requests that clients submit. The first strategy favors frequent lookups and
rare updates as lookups are handled with no penalty, even for shipped records,
when no updates occur. The second strategy favors more frequent updates as
it eliminates the extra forwarding of every single request for a shipped record
that has been updated. As it turns out, the first strategy is essentially simpler
when also considering concurrency issues, which we discuss next.

5. The Solution for Overlapping Redistributions

In a reasonably sized distributed service consisting of a large number of servers,
configuration changes requiring record redistributions may overlap. A realistic
solution to our redistribution problem should therefore also operate in the case
of concurrent configuration changes. In this section we show that our solution
can easily be extended to support multiple, overlapping record redistributions.

The easiest way to deal with multiple concurrent redistributions is to simply
apply a total ordering to them and execute them sequentially. This can be done
by having the configuration service queue notifications for new configuration
changes and process them one at a time. This solution is, however, not satis-
factory since it does not achieve any concurrency. The redistributions are still
handled one at a time.

In the following three approaches we attempt to introduce more efficiency
by gradually introducing more concurrency for redistributions. In this section,
let R1, R2, . . . ,Rn be the sequence of upcoming redistributions andM1, M2,
. . . , Mn their respective mappings.M0 is the (current) authoritative mapping
of the distributed service as a whole.

SIU 2002



“main”
2003/12/14
page 40

i

i

i

i

i

i

i

i

40 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

5.1. Approach I: Per-server Sequential Redistribution

A first step towards redistribution concurrency is to allow redistributions to
overlap in the distributed service as whole but constrain each server to deal
locally with just one redistribution at a time, completing redistributions in the
order submitted. In this case, the configuration service does not need to queue
notifications for new configuration changes. Instead, it generates a new map-
ping and distributes it to the servers as soon as it receives a notification for a
new configuration change. The servers themselves are responsible for locally
queuing incoming mappings and processing them one at a time in the order
received.

Each server maintains aqueue of mappings, which always containsat least
one mapping. In the case ofn redistributions in progress with mappingsM1 . . . Mn

and authoritative mappingM0, a server’s queue contains all these mappings in
the orderM0,M1, . . . ,Mn. The mapping at the head of the queue is always
the authoritative mapping as known by the server. The rest are mappings asso-
ciated with the redistributionsR1, R2, . . . , Rn that are currently in progress.

A server that has relocated all records for redistributionR1 can start car-
rying out the record relocation for the next redistributionR2 before all other
servers have completed redistributionR1. However, the server doesnot remove
either mappingM0 or M1 from its local queue of mappings. The authoritative
mapping as known to the server (i.e.,M0) is removed from the server’s queue
only upon receiving a notification from the configuration service stating that
redistributionR1 has been completed by all servers. At this point, the server
discardsM0 and replaces it byM1, which becomes the new authoritative map-
ping.

To facilitate our description of this approach, as well as of the ones to fol-
low, we define thecurrent redistributionto be the oldest redistribution for
which at least one server has not yet finished shipping records. LetR1 be
the current redistribution. Assume that a server has finished shipping records
for R1, R2, . . . , Rj(j ≥ 1), and is now shipping records forRj+1. During
the shipping it receives a request for some record that was shipped based on
Ri(1 ≤ i ≤ j) and that thus cannot be handled locally. The server forwards the
request based on the first mapping that remaps this record, which is mapping
Mi. The server looks for such a mapping, starting at mappingM1 and going
no further than the mapping that is currently being handled by the server, that
is, mappingMj+1.

To make our description of the server’s forwarding decision more precise,
we introduce the notion of a virtual mapping. Consider a serverS and a series
of mappingsM1 . . . Mn. We define thevirtual mapping with first preference

SIU 2002



“main”
2003/12/14
page 41

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 41

Figure 5.2: Virtual mapping with first preference

M1...n as the mapping that maps each record as prescribed by thefirst map-
ping inM1 . . . Mn that maps it to another server thanS, starting fromM1 and
ending atMn. The only records not remapped by the virtual mappingM1...n

are the ones not remapped to another server thanS by any of the mappings
M1 . . . Mn. Figure 5.2 shows an example of six records being remapped by
mappingsM1,M2, andM3 and the remapping of the same records based on
the virtual mappingM1...3.

Let us now explain how Approach I works. Upon receiving a notification
for redistributionRi, the configuration service builds a new mappingMi and
sends it to all servers. Mappings are delivered to all servers reliably and in
the same order. When a server receives the new mappingMi, it queues it if it
is busy with some previous redistribution, or otherwise starts shipping records
based on it. Only when a server has finished shipping all records based on a
mapping, does it start shipping records based on the next mapping in its queue.

A record is shipped along with the index of the redistribution that mandated
its relocation. The server receiving a record cannot reship it in the context of
the same or any prior redistribution. This safeguards us against continuously
shipping records back and forth between two or more servers. Such an anomaly
could occur in the following scenario. RedistributionR1 remaps a record that
is initially in serverA to serverB and redistributionR2 remaps it back toA.
If A is working onR1 while B is working onR2, the record keeps being sent
back and forth. Sending the index of the redistribution with the record prevents
this situation.

SIU 2002



“main”
2003/12/14
page 42

i

i

i

i

i

i

i

i

42 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

ON Notification for Redistribution R[i] DO
Compute mapping M[i] for R[i]
Distribute it to all the servers

ON Completion of Redistribution R[i] DO
Notify all servers about R[i]’s completion.

Figure 5.3: Configuration Service’s pseudocode for Concurrent
Approach I

A server notifies the configuration service when it completes shipping records
for a redistribution. The server continues with processing redistributions until
all the mappings in the server’s queue have been processed. The authoritative
mappingM0 at the server is removed from the head of its queue only after the
configuration service has announced that all servers have completed the current
redistribution. After the removal, the next mapping in the queue,M1, becomes
the new authoritative mapping.

Upon receiving a request that cannot be handled locally, the server forwards
it based on the virtual mapping with first preference of all mappings in its
queue, sayM0...n. It forwards the request to the appropriate server, along with
the indexk of the actual mappingMk that prescribed this forwarding. If the
receiving server needs to further forward the request, it will do so according
to the virtual mappingMk+1...n. Assuming that the record exists, the server
that has the requested record will eventually be reached and will process the
request.

The pseudocode in Figures 5.3 and 5.4 shows the actions that the configu-
ration service and the servers have to take to implement Concurrent Approach
I.

5.2. Approach II: Per-server Mixed but Ordered Redistributions

A second step toward increased concurrency is to ease the requirements on
when a server can start shipping records according to one of its queued map-
pings. The main idea is that there are cases where a server does not need to
complete a redistribution to start working on the next one. Assume a server
is currently going through its set of records, checking which ones are to be
shipped based on redistributionRi and it comes across a record that is not
remapped byRi. The server can then ship this record based on a successive
redistributionRj(j > i), even if it has not finishedRi yet.

SIU 2002



“main”
2003/12/14
page 43

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 43

ON receiving mapping M[i] DO
IF currently working on an earlier redistribution THEN

put M[i] at the end of the mapping queue
ELSE

start shipping records based on M[i]

ON finishing shipping records for M[i] DO
report completion of record relocations for M[i] to configuration service
IF have not reached the end of the mapping queue THEN

start shipping records based on M[i+1]
//M[i] is not removed from the queue yet

ON receiving a request from a client DO
IF the request can be handled locally THEN

handle the request locally
ELSE

forward the request based on the virtual mapping with 1st pref M[k+1..j]
//k is the index of the last redistribution that relocated the record
//the server is currently shipping records based on M[j]

ON receiving notification about completion of Redistribution R[i] DO
remove M[i-1] from the queue
make M[i] the authoritative mapping

Figure 5.4: Configuration Service’s pseudocode for Concurrent
Approach I

The main difference with the previous approach is the time when records
are shipped, notwhichrecords are shipped orwherethey are shipped to. In this
approach the server ships each record as soon as possible, based on the virtual
mapping with first preference of all the mappings in its queue. Requests are
forwarded in the same way as in Approach I.

5.3. Approach III: Direct Shipping to Final Destination

Approach III deals with the forwarding inefficiency that arises when a record
is shipped to different servers in a row. In both Approaches I and II, a record
that is consecutively mapped to different servers by overlapping redistributions
is shipped through each of them. The record finally ends up at the server man-
dated by the last redistribution.

The optimization introduced in Approach III entails that a record is shipped
directly to the record’s hosting server according to thelast known redistribu-
tion. This policy keeps a record from being shipped from server to server when

SIU 2002



“main”
2003/12/14
page 44

i

i

i

i

i

i

i

i

44 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

Figure 5.5: Virtual mapping with last preference

it is already known that it needs to be shipped further. Instead, the record is sent
directly to the last server in the chain of servers it is mapped to. This policy
prevents unnecessary network traffic and redistribution delay.

To explain, we need to introduce a second virtual mapping. Consider a
serverS and a series of mappingsM1 . . .Mn. We define thevirtual map-
ping with last preferenceML,1...n as the mapping that maps each record as
prescribed by thelast mapping that maps it to another server thanS. Fig-
ure 5.5 shows an example of six records being remapped by mappingsM1,M2,
andM3 and the remapping of the same records based on the virtual mapping
ML,1...3.

Let us now see how Approach III works. As before, when the configuration
service receives a notification for a configuration change, it generates a new
mapping and distributes it to all servers. When a server receives a mapping, it
places it at the end of its local queue of mappings. A mapping is removed from
this queue only when the configuration service announces the completion of the
respective redistribution. Since record redistributions are allowed to complete
only in the order they were initiated, mappings are removed only from the head
of a server’s queue.

The main difference in Approach III is that a server ships records based
on the virtual mapping withlast preference of all the mappings in its queue.
The records are thus directly relocated to the proper hosting server. However,
servers still use the virtual mapping withfirst preference of all these mappings
to forward requests that cannot be handled locally. This is done to avoid the
following situation. Assume thatM1 is the last mapping in serverS’s queue,
and serverS ships a record to serverA based onM1. After having shipped the
record, a new mappingM2 arrives at serverS remapping that same record to

SIU 2002



“main”
2003/12/14
page 45

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 45

serverB. If the virtual mapping with last preference was also used to forward
requests, a request for this record would be sent toB, while the record may
still be located at serverA. Therefore, to ensure the request finds the record, it
needs to travel through all servers that potentially store the record.

6. Related Work

In this paper we address the problem of data relocation in a distributed environ-
ment. A plethora of related publications have appeared in the literature, mainly
dealing with relocating data in distributed databases, or in general, storage sys-
tems. However, the majority of these papers focus on different problems than
the one we do. A number of them deal with the problem of determining the
optimalallocationor placementof data in a set of devices or servers, usually
trying to optimize load balancing and QoS characteristics [3, 4] or replication
properties [5]. Unfortunately, they do not deal with the implications of the data
transfer itself, or they assume a static data allocation that can be configured
during a temporary (and probably partial) deactivation of the system [6]. Other
papers deal with the details of how to carry out transactions while performing
data transfers, but assume a model that supports replicated data [7].

In terms of providing a framework to add or remove servers, the problem
we have tackled resembles that of dynamic changes to the set of servers in
a distributed data storage system. When the set of servers changes, some data
needs to be migrated to reflect the current set of servers. In many systems today
such changes are made manually, by taking the system temporarily off-line. In
other systems replication is employed to allow data to be redundantly stored in
more than one server, to facilitate a smooth join or leave of a server. Many of
the architectures that use replication in terms of adding or removing servers,
are in fact dealing with fault tolerance, which is a problem orthogonal to the
configuration problem we have presented.

Schemes like the ones described above do not apply to our situation, as we
seek solutions to distribute data across servers without interrupting the service
and without introducing replication. To the best of our knowledge, the problem
described in this paper has not been addressed in the current literature.

SIU 2002



“main”
2003/12/14
page 46

i

i

i

i

i

i

i

i

46 S. Voulgaris - M. van Steen - A. Baggio - G. Ballintijn

7. Conclusions

This paper deals with a management issue of distributed services, namely
the redistribution of non-replicated data among the servers comprising a dis-
tributed service. Our objective has been to redistribute the data without dis-
rupting the service’s availability. The main contribution of this paper is that we
have shown that transparent data redistribution is possible. That is, it is possible
to carry out such a redistribution in a way that is totally transparent to clients
of the service. In order to exploit parallelism in the presence of overlapping
configuration changes, we have also analyzed the implications of a concurrent
version of the solution.

The solution consists of two parts. First, shipping the data records that
need to be relocated to their new hosting server; second, updating the servers’
mapping information to reflect the new configuration of the distributed service.
Our solution enables low delays in the servicing of client requests during a
configuration change, adds no significant processing requirement to the servers
involved, and terminates in a timely fashion. Its most attractive advantage
though is its conceptual simplicity, both in the sequential and the concurrent
versions.

References

[1] H.-G. Hegering, S. Abeck, and B. Neumair.Integrated Management of Networked Systems.
Morgan Kaufman, San Mateo, CA, 1999.

[2] E. Pitoura and G. Samaras “Locating Objects in Mobile Computing.” IEEE Transactions on
Kowledge and Data Engineering, 13(4):571-592, July 2001.

[3] E. Borowsky, R. Golding, A. Merchant, L. Schreier, E. Shriver, M. Spasojevic, and J. Wilkes.
“Using attribute-managed storage to achieve QoS.” InProc. of the 5th Int’l Conf. Workshop on
Quality of Service, Columbia University, New York, June 1997.

[4] J. Wolf. “The Placement Optimization Problem: a practical solution to the disk file assignment
problem.” InProc. of the ACM SIGMETRICS Int’l conference on Measurement and modeling
of computer systems, pp. 1-10, 1989

[5] A. Brunstrom, S. Leutenegger, and R. Simha. “Experimental Evaluation of Dynamic Data
Allocation Strategies in a Distributed Database With Changing Workloads.” InProc. Fourth
Int’l Conf. on Information and Knowledge Management, pp. 395–402, New York, NY, Nov.
1995. ACM, ACM Press.

[6] J. Hall, J. D. Hartline, A. R. Karlin, J. Saia, and J. Wilkes. “On Algorithms for Efficient Data
Migration.” In Proc. 12th Symp. Discrete Algorithms, pp. 620–629, New York, NY, Jan. 2001.
ACM-SIAM, ACM Press.

[7] B. Kemme, A. Bartoli, and O. Babaouglu. “Online Reconfiguration in Replicated Databases
Based on Group Communication.” InProc. Int’l Conf. Dependable Systems and Networks, Los
Alamitos, CA, June 2001. IEEE Computer Society Press.

SIU 2002



“main”
2003/12/14
page 47

i

i

i

i

i

i

i

i

Transparent Data Relocation in Highly Available Distributed Systems 47

Authors addresses:
Spyros Voulgaris, Maarten van Steen, Aline Baggio, Gerco Ballintijn.
Vrije Universiteit Amsterdam
Faculty of Sciences
Department of Computer Science
De Boelelaan 1083a , 1081 HV Amsterdam
Amsterdam, The Netherlands
spyros@cs.vu.nl, steen@cs.vu.nl, baggio@cs.vu.nl, gerco@cs.vu.nl

SIU 2002


